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a b s t r a c t

Aim: Discrimination power evaluation of UV–Vis and (7) electrospray ionization/mass spectrometric
techniques, (ESI-MS) individually considered or coupled as detectors to reversed phase liquid chromato-
graphy (RPLC) in the characterization of Ginkgo Biloba standardized extracts, is used in herbal medicines
and/or dietary supplements with the help of Fuzzy hierarchical clustering (FHC).
Experimental: Seventeen batches of Ginkgo Biloba commercially available standardized extracts from
seven manufacturers were measured during experiments. All extracts were within the criteria of the
official monograph dedicated to dried refined and quantified Ginkgo extracts, in the European
Pharmacopoeia. UV–Vis and (7) ESI-MS spectra of the bulk standardized extracts in methanol were
acquired. Additionally, an RPLC separation based on a simple gradient elution profile was applied to the
standardized extracts. Detection was made through monitoring UV absorption at 220 nm wavelength or
the total ion current (TIC) produced through (7) ESI-MS analysis. FHC was applied to raw, centered and
scaled data sets, for evaluating the discrimination power of the method with respect to the origins of the
extracts and to the batch to batch variability.
Results: The discrimination power increases with the increase of the intrinsic selectivity of the spectral
technique being used: UV–VisoMS(�)oMS(þ), but it is strongly sensitive to chemometric transforma-
tion of data. Comparison with cluster analysis (CA) and principal components analysis (PCA) indicates
that the FHC algorithm produces better classification. However, PCA and CA may be successfully applied
to discriminate between the manufacturing sources of the standardized extracts, and at some extent, to
monitor the inter-batch variability. Although the chromatographic dimension sensibly contributes to the
discrimination power, spectral MS data may be used as the lone powerful holistic alternative in
characterization of standardized Ginkgo Biloba extracts.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays fingerprinting and pattern recognition algorithms
represent valuable tools for the characterization of the complex

chemical mixtures of natural origins, with promising results in
various application fields such as food [1,2], beverages [3,4],
agriculture [5,6], chemotaxonomy [7,8], herbal medicines [9],
dietary supplements [10,11], metabolic profiling [12–14], environ-
mental [15,16] and standardization [17]. The European Medicines
Agency [18] recommends that the appropriate fingerprinting
procedures should be based on chromatographic techniques.
However, other techniques, such as the spectral ones, may lead
to interesting and useful results [19] as the US Food and Drug
Administration [20] recommends.

Evolvement of fingerprinting procedures during the last decade
has been supported by the application of powerful and advanced
chemometric methods, among which principal component analysis
(PCA), partial least squares (PLS), cluster analysis (CA), linear
discriminant analysis (LDA) and artificial neuronal networks (ANN)
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should be mentioned as the most frequently used [21–25]. These
methods generally lead to very efficient classifications, but are highly
sensitive to outliers, missing data, and/or inadequate linear correla-
tion between variables due to their poor distribution, as major sources
for erroneous conclusions. These disadvantages may be eliminated by
using robust techniques, such as Fuzzy hierarchical clustering (FHC).
Fuzzy logic is a form of many-valued logic, which deals with reason-
ing that is approximate rather than fixed and exact. Fuzzy logic has
been extended to handle the concept of partial truth, where the truth
value may range between completely true (1) and completely false (0)
[26]. In classical CA each object must be assigned to exactly one
cluster and this is leading to ambiguity and error in cases of outliers
or overlapping clusters and affords information loss, while FHC is
leading to classes and subclasses representing a collection of ill-
defined and not-distinct objects with undefined boundaries in which
the transition from membership to non-membership in a subclass of
a reference set is gradual rather than abrupt.

The Fuzzy theory is basically a theory of graded concepts. It is an
extreme generalization of ordinary set theory and is basically
designed to handle the concept of partial truth or fuzziness. It
provides an adequate conceptual framework as well as a mathe-
matical tool to model the real world problems which are often
vagueness and indistinct [27–29]. Most FHC algorithms are based
on objective functions and determine an optimal classification by
minimizing them. In objective function based clustering each
cluster is usually represented by a cluster prototype, which consists
in a cluster center (whose name already indicates its meaning) and
maybe some additional information about the size and the shape of
the cluster. The affiliation to a specific cluster is given by the
degrees of membership, computed as the distance from the data
point to the cluster center defined by the fuzzy means. The closer a
data point lies to the center of a cluster, the higher is its degree of
membership to this cluster. Hence, the problem to divide a data set
into clusters can be stated as the task to minimize the distances of
the data points to the cluster centers, since, of course, the principal
target represents the maximization of membership degrees [30,31].

The leading concepts of the Fuzzy theory may successfully
support not only concrete fingerprinting procedures of complex
natural mixtures, but also a holistic characterization of complex
mixtures, with reduced risks relating to the misinterpretation of
the primary data.

Ginkgo Biloba is a medicinal plant frequently used as dried
vegetal material or refined extracts in herbal medicines or dietary
supplements. The composition of Ginkgo Biloba derived materials
is complex [32], usually requiring powerful analytical tools for a
comprehensive characterization [33–36].

The herein presented approach aims to deliver responses to the
following main questions: (i) Do the spectrometric techniques (UV/Vis
and 7 MS) have, taken separately, enough potential to produce
experimental data with the required discriminating power to assess
the origins and batch to batch variability of complex natural samples?
(ii) Is the chromatographic dimension essential for the correct
assessment of the origins and reproducibility in the production stages
of standardized natural extracts? (iii) Which of the chemometric
methods (HFC, PCA and CA) is the most suitable one for informational
discrimination assessment of the analytical experimental data? (iv) Is
chemometric data treatment affecting the discrimination power?

Our starting decision was to focus on standardized extracts and
not on dried vegetal materials, considering this approach as a
“worst” case application (discrimination is tested on materials
meeting strictly specified quantitative criteria).

The opportunity of our approach is based on the increasing
success of dietary supplements from natural source, on the
medical markets, which are characterized by affordable prices.

This market is, however, less strictly regulated than the one of
classic medicines (drugs) and the variability of the raw active

materials is naturally higher than for synthetic products. An
evident contradiction appears between the need of efficient
production with the lowest expenditure and the objective neces-
sity of deep analytical characterization of the complex active raw
materials of natural origins and their inherent quality control,
involving expensive resources. Holistic approaches as those inves-
tigated in the present manuscript may represent straightforward
and relatively inexpensive alternatives to the assessment of the
composition variability with respect to origins and batch to batch
variability of complex mixtures from natural sources. The informa-
tion produced through application of chemometric methods to
spectral or chromatographic data should not be considered as a
substitute for the quantitative assays involved in the characteriza-
tion of standardized materials according to official monographs,
but only an easier and rapid way of controlling the source
(manufacturer) and batch to batch reproducibility.

2. Materials and methods

2.1. Chemicals

Acetonitrile and methanol were HPLC gradient grade from
Merck (Darmstadt, Germany). Formic acid (extra pure grade) from
Merck was also used during experiments. Water for chromato-
graphy (resistivity of minimum 18.2 MΩ and residual total organic
carbon content – TOC – of maximum 30 ng mL�1) was produced
within the laboratory by means of a TKA Lab HP 6UV/UF instru-
ment (TKA Instruments as part of Thermo Fischer Scientific,
Niederelbert, Germany).

2.2. Samples

Seventeen Ginkgo Biloba standardized extracts from six differ-
ent manufacturers (A–F) were used during experiments. Samples
1–3 are batches produced at 1 year distance by manufacturer
A. Samples 4–11 are eight different batches from manufacturer
B, produced over 2 years interval (samples 7–11 are consecutive
batches). Samples 12 and 13 are batches from manufacturer
C, while samples 14 and 15 are consecutive batches from manu-
facturer D. Samples 16 and 17 are from suppliers E and F. All
analyzed batches were placed within their declared shelf life
period at the moment of the analysis. All standardized extracts
are declared by manufacturers to comply with requirements of the
official monograph of European Pharmacopoeia for Ginkgo Biloba
dry extract, refined and quantified [37].

2.3. Equipment

Experiments were performed with an Agilent 1200 SL series
LC/MSD (Agilent Technologies) system consisting of the following
modules: degasser (G1379B), binary pump (G1312B), automated
injector (G1367C and its corresponding thermostat G1330B),
column thermostat (G1316B), diode array detector (G1315C) fitted
with a semi-micro 5 mL flow cell (G1314-60011), ESI standard
source (G1948B), and triple quadrupole mass spectrometric detec-
tor (G2571A). System control, data acquisition and interpretation
were made with the Agilent Mass Hunter software version B 04.01
(B4114 Patch 1) incorporating both qualitative and quantitative
packages.

2.4. MS parameters

The parameters controlling the ESI ion source were as following:
drying gas (N2); temperature (350 1C); drying gas flow (13 L min�1);
pressure of the nebulizing gas (60 psi); capillary voltage (4000 V).
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The fragmentor potential was set at 135 V. EMV was 600 V. The
resolution of the mass analyzer was set to 0.1 a.m.u. A scan time of
500 ms was used. The MS detection was carried out in the MS2 scan
mode. MS spectra were acquired in the 50–1200 a.m.u. interval.

2.5. Sample preparation

Standardized Ginkgo Biloba extracts were dissolved in metha-
nol, at a nominal concentration of 1 mg mL�1. No further proces-
sing of the resulting solutions was applied.

2.6. Chromatographic separation

A Zorbax Eclipse XDB-C18, 150 mm length, 4.6 mm internal
diameter and 3.5 mm particle size (Agilent Technologies, cat. no.
963967-902) fitted with a Guard Cartridge C18, 4 mm�2mm (Phe-
nomenex, prod. no. AJO-4286) was used and thermostated at 25 1C.
The components of the mobile phase were 0.1% (v/v) formic acid
solutions in acetonitrile (solvent A) and water (solvent B). A gradient
elution with the following profile was applied (time: min/solvent
A: %): 0/10-5/10-65/100-90/100-90.01/10-95/10. The last two
stages in the gradient profile correspond to column re-equilibration.
The flow rate was 0.8 mLmin�1. Injected sample volume was 2.5 mL.

2.7. Experimental design

For the acquisition of UV-Vis and/or (7)MS spectra, 2.5 mL
from each standardized extract were directly injected in a stainless
steel (S.S.) tube 2 m length � 0.12 mm i.d., also thermostated at
25 1C. The carrier was a mixture 1/1 (v/v) between solvents A and
B, at 0.8 mL/min flow rate. Consecutive injections were made at
4 min interval. UV–Vis spectra were acquired in the 190–800 nm
spectral range, with a spectral resolution of 1 nm.

Chromatographic experiments consisted in the application of
the separation method described under Section 2.6. to the stan-
dardized extracts’ solutions. The monitoring was at 220 nm for
DAD detection with a data acquisition rate of one reading each
0.0066 min. For MS detection, spectra were recorded in the m/z
range 50–1200 a.m.u. with 0.1 a.m.u. spectral resolution, either in
(þ) or (�) ES ionization. The data acquisition speed used in the
total ion current (TIC) working mode was one reading each
0.0097 min.

2.8. Raw data processing

UV-Vis or (7) MS spectra were taken at the apex of the peak
that was registered after the transport of the sample through the S.
S. tube. Spectra or chromatograms were exported to Excel sheets,
as two functionally related numeric strings: wavelength (nm)/
absorbance (mAU) for UV-Vis spectra; m/z value (a.m.u)/intensity
(cps) for MS spectra; time (min)/absorbance at 220 nm (mAU) for
UV monitored chromatograms; time (min)/relative intensity (%)
for (7) MS, TIC monitored chromatograms. UV-Vis spectra
were represented by 610 values for each of the numeric strings.

The acquisition interval of the MS spectra (from 50 to 1200 a.m.u.)
was reduced to the interval 100–1100 a.m.u. Each 10 consecutive
data from the mass spectra were averaged, in order to produce 1 a.
m.u. spectral resolution. Consequently, numeric strings contain
1000 values. UV monitored chromatograms were considered only
in the 5–30 min retention time interval. Five successive acquired
data were averaged, in order to produce one reading for a
0.033 min period. Corresponding numeric strings contain 751
values each. MS monitored chromatograms were considered in
the 0–40 min retention time interval. Five consecutive data values
were averaged in order to produce one reading for a 0.047 min
period. Corresponding numeric strings contain 842 values. This
additional processing of raw acquired data was necessary in order
to limit the length of the strings up to 1000 values. This was truly
necessary as long as processing of numeric strings larger than
1000 values through the related chemometric software required
very long periods and often determined PC blocking. Parts from
the chromatograms after min 30 (for UV detection) and 40 (for MS
detection) were discarded as long as the signal to noise ratio (S/N)
for peaks appearing in the respective intervals were below 3.

2.9. Data analysis

Matrices used for chemometric analysis were differed accord-
ing to the analytical system used. Thus, the matrices correspond-
ing to HPLC-MS (7) system were consisted of 17 samples � 842
variables, while for HPLC-UV-Vis the matrix was formed by 17
samples � 751 variables. Moreover, in the case of MS (7) spectra
the matrix was formed by 17 samples � 1000 variables, while for
UV-Vis spectra the matrix was formed by 17 samples � 610 vari-
ables. The chemometric analysis tried to elucidate if FHC is more
informative than PCA and CA. Moreover, it tried to indicate which
of the analytical systems used is more selective, and with a higher
discrimination capacity, as well as to underline how the data
transformation is influencing the final results.

The FHC analysis was performed on raw, centered and scaled
data. The FHC partitions were obtained through application of a
hierarchical algorithm, which is minimizing the distances of the
data points to the cluster centers. For each case the quality of
partition was evaluated along with the cluster validity indices
referred in Table 1. The entire FHC analysis was performed with
Sadic 8.3., a personal software package. On the raw matrices
presented above, the PCA and CA were performed using Statistica
8.0 software. Software were run on a personal computer (laptop)
Sony Vaio equipped with an Intels core™ – i5 3210 M 2.5 GHz,
8 GB RAM. The computational processes took between 8 and 24 h.

3. Results and discussion

3.1. Premises

In Supplementary material: Part A, some illustrative chromato-
grams and spectra representing the source of the raw numerical

Table 1
The clustering validity indices values corresponding to FC algorithms.

Indexa Raw data Centered data Scaled data

HPLC-MS
(�)

HPLC-MS
(þ)

HPLC-
UV

MS
(�)

MS
(þ)

UV HPLC-MS
(�)

HPLC-MS
(þ)

HPLC-
UV

MS
(�)

MS
(þ)

UV HPLC-MS
(�)

HPLC-MS
(þ)

HPLC-
UV

MS
(�)

MS
(þ)

UV

PCN 0.361 0.392 0.572 0.414 0.461 0.474 0.361 0.392 0.572 0.414 0.461 0.479 0.251 0.208 0.562 0.113 0.291 0.381
PEN 0.555 0.549 0.356 0.490 0.462 0.474 0.555 0.548 0.356 0.489 0.462 0.474 0.706 0.812 0.358 0.917 0.744 0.581
IBJ 0.766 0.772 0.887 0.825 0.819 0.797 0.766 0.772 0.887 0.825 0.819 0.797 0.616 0.457 0.889 0.321 0.515 0.729

a PCN, normalized partition coefficient; PEN, normalized partition entropy; IBJ, Backer–Jain Index.
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data sets used in FHC, PCA and CA evaluation are provided.
Intentionally, samples from different manufacturers and batch
numbers have been chosen, to force visual comparison. Although
some differences may be noted through naked eye observation, a
classification of samples based on the simple visual inspection
seems an unrealistic task from the beginning.

It is to note that the gradient profile of the RPLC separation was
intentionally kept low (1.5%/min) to increase the separation resolu-
tion. A rough comparison between the chromatograms resulting
after the use of different detection systems indicates that the
number of peaks does not differ substantially (i.e. 48 peaks in (�)
MS monitored chromatograms, 49 peaks in (þ) MS monitored ones
and 56 peaks in UV �220 nm, if considering sample 1). Both
positive and negative mass spectra contained 100 peaks. Although
positive ionization was favored by the chemistry of analytes in the
acidic mobile phase being used, negative ionization also appears,
probably due to occurrence of phenolic groups and glycosidated
forms of separated analytes. UV detection provides chromatograms
exhibiting the highest number of separated compounds. However,
due to the intrinsic poor sensitivity of the detection technique, most
of the peaks have low intensity. Compounds exhibiting extreme
retention characteristics (both reduced and increased retention)
were better observed under (þ) ESI monitoring. Signals in (þ) MS
spectra are about one order of magnitude higher than those existing

in the (�) MS ones. However, negative ionization allows a better
observation of peaks in the 700–1000m/z interval.

3.2. Fuzzy hierarchical clustering assessment

By performing FHC on the raw, centered and scaled data, the
samples were distributed on clusters of different sizes. To assess the
clustering performance of FHC algorithms, three validity indices
were calculated [38–40]. The values of the validity indices obtained
for the fuzzy algorithm applied in this study are presented in Table 1.

By comparing the values in Table 1 and the variation of validity
indices shown in Supplementary material: Part B, one can con-
clude that the raw and centered data are leading to identical
results, thereby only raw and scaled data will be further investi-
gated. Moreover, the validity indices are suggesting that the best
separation of the investigated samples is offered by the raw data.

The assignment of a sample to a particular cluster is evaluated by
means of the membership degree, which varies between 0, when a
sample does not belong to a particular cluster, and 1, situation when
the sample is considered to be a member of a selected cluster. In
other words, each sample belongs to one and only one cluster when
a membership degree is 1. In our case, sample distribution within
the obtained clusters was more or less in good agreement with
samples origin (Supplementary material: Part C).

Fig. 1. The hard partition tree corresponding to the fuzzy hierarchical clustering on normal data, for the Ginkgo Biloba samples: (1) RPLC/(�)MS, (2) RPLC/(þ)MS, (3) RPLC/UV,
(4) (�)MS, (5) (þ)MS, and (6) UV.
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The correlations between various samples may be evaluated by
hard partition corresponding to the fuzzy successive partition of
the samples, produced by using fuzzy divisive hierarchical cluster-
ing. The hard partition is obtained by defuzzification of the fuzzy
partition. The samples are assigned to the cluster with the highest

membership degree. Figs. 1 and 2 illustrate the assignment of the
samples in agreement with the highest membership degree, for
raw and scaled data sets.

From the point of view of a non-specialist end-user, the FHC
results should discriminate against six different manufacturers

Fig. 2. The hard partition tree corresponding to the fuzzy hierarchical clustering on scaled data, for the Ginkgo Biloba samples: (1) RHPLC/(�)MS, (2) RPLC/(þ)MS, (3) RPLC/UV,
(4) (�)MS, (5) (þ)MS, and (6) UV.

Table 2
Hierarchical levels and categories resulting through application of the FC algorithms on raw and scaled data sets, when considering samples or manufacturers. Tentative
ranking of the techniques with respect to their ability of classifying according to origin (manufacturer) and batch succession.

Technique Data set Fuzzy hierarchical clustering on samples Fuzzy hierarchical clustering on manufacturers R1a R2b Fc Rank Technique

Levels Categories Levels Categories

RPLC/(�)MS Raw 5 13 3 4 0.500 1.67 0.833 1 RPLC/(þ)MS (R)
Scaled 3 5 2 1 0.125 1.50 0.188 2 RPLC/(�)MS (R)

RPLC/(þ)MS Raw 5 10 2 4 0.500 2.50 1.250 3 (�)MS (R)
Scaled 2 3 2 0 0.000 1.00 0.000 4 RPLC/UV (R)

RPLC/UV Raw 6 15 6 3 0.375 1.00 0.375 4 (þ)MS (R)
Scaled 6 15 6 2 0.250 1.00 0.250 5 UV (S)

(�)MS Raw 5 12 3 2 0.250 1.67 0.417 6 RPLC/UV (S)
Scaled 1 2 1 1 0.125 1.00 0.125 6 (þ)MS (S)

(þ)MS Raw 3 6 2 2 0.250 1.50 0.375 7 RPLC/(�)MS (S)
Scaled 2 3 2 2 0.250 1.00 0.250 8 (�)MS (S)

UV Raw 5 8 5 1 0.125 1.00 0.125 8 UV (R)
Scaled 5 8 2 1 0.125 2.50 0.313 9 RPLC/(þ)MS (S)

a R1¼ (identified manufacturersþbatch succession discrimination)/categories to be determined (8).
b R2¼ identified hierarchical levels based on samples/hierarchical levels classifying according to manufacturers.
c F is the ranking score.
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(A–F) and two categories of batches (non-consecutive or consecu-
tive ones, applying in case of manufacturer B, more precisely batch
series 4–6 and 7–11, respectively, further denoted B1 and B2). Such
an achievement is based theoretically on six hierarchical levels
and isolation of eight different categories (the worst case situation
was considered, corresponding to the isolation of manufacturer B
in the fifths hierarchical level, followed by discrimination accord-
ing to batch succession in the sixth one). By shifting from sample
numbers to manufacturer's names in the hard partition trees
resulting from application of the FHC algorithm on normal or
scaled data, one can easily evaluate the discrimination power of
each experimental investigation technique. The discussion is
illustrated in Table 2. The ratio between the numbers of positively
identified manufacturers (including batch succession in case of
manufacturer B) and total categories to be determined, as well as
the ratio between hierarchical levels needed to discriminate
against samples and manufacturers, respectively, were tentatively
used for ranking the classifying ability of FHC.

The fuzzy hierarchical clustering applied to raw data has
increased discrimination power against manufacturers compared
to the algorithm applied on scaled data. From the resulting parti-
tions, mainly focusing on raw data processing, one can conclude
that: (i) manufacturer A (samples 1–3) was clearly isolated against
the others by all processed data sets derived from chromatographic
separations coupled to the spectrometric detection systems, but
only by individually taken (þ) MS data; (ii) manufacturer B
(samples 4–11) was clearly isolated against the others by processing
raw data from the chromatographic separations coupled to MS
detection (either under positive or negative ionization) as well as
data from the mass spectra taken individually; RPLC/UV and UV
data sets failed to classify manufacturer B with respect to the
others; (iii) the only technique which was sensitive to batch
succession under manufacturer B, grouping separately samples
4–6 and 7–11, is RPLC/(þ)MS; (iv) manufacturers C–F are clearly
classified against manufacturers A and B by RPLC/(�)MS, RPLC/(þ)

MS, RPLC/UV and (þ) MS data sets; (v) manufacturer C is clearly
isolated against the others when RPLC/UV data was processed; (vi)
manufacturer D was isolated with respect to the other manufac-
turers when FHC is performed on scaled RPLC/(�)MS data; (vii)
manufacturers E and F were classified against the others when
RPLC/(�)MS raw data sets were processed; (viii) manufacturer E
was isolated against the others only by processing RPLC/(�)MS raw
data and RPLC/UV scaled data sets; (ix) manufacturer F was isolated
against the others through the processing of RPLC/(�)MS, RPLC/UV
data and (�)MS and UV data sets; (x) none of the data sets (raw or
scaled) produced classification of manufacturers C and D against
manufacturers E and F. As expected, the coupling of the spectro-
metric detectors to RPLC separation provides data leading through
higher classification power in FHC processing.

According to the validity indices presented in Table 1 and
Supplementary material: Part B, the highest discrimination was
reached when applying FHC to RPLC-UV data sets. However,
previous interpretations lead to the conclusion that RPLC/(�)MS
is producing a more realistic discrimination of samples, which is in
fair agreement with samples’ origin (manufacturer). Although
RPLC/UV (identifying the largest number of peaks) is leading to

Fig. 3. Projection of all samples in the space defined by the membership degrees to various clusters obtained from RPLC/(þ)MS raw data, (þ)MS raw data, RPLC/(þ)MS
scaled data and (þ)MS scaled data.

Table 3
PCA eivenvalues for the first two principal components.

Analytical technique Proportion (%)

PC1 PC2 Cumulative

RPLC/(�)MS 55.67 25.84 81.51
RPLC/(þ)MS 45.86 30.13 75.99
RPLC/UV (220 nm) 98.94 0.63 99.57
(�)MS 85.68 8.42 94.10
(þ)MS 90.16 3.66 93.81
UV 85.27 6.73 92.00
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the highest number of clusters, its discrimination seems chaotic.
Batch succession sensitivity was brought only by the RPLC/(þ)MS
approach. The classification power seems related to the intrinsic
selectivity of the detection system response, and follows the (�)
MS4(þ) MS4UV (220 nm) order. Spectrometric techniques
taken individually also obey to the selectivity rule. (þ) MS
relatively conserved the ability to classify against batch succession,
indicating that for similar selectivity characteristics, the intrinsic
sensitivity acts favorably on discrimination.

An alternative approach for evaluating the discrimination power
of the processing algorithm in relation to manufacturer and batch

succession may be offered by the graphical representation of the
membership degrees. As a first approach, the evaluation of all
possible combination of clusters has been made, to obtain the best
classification with respect to the samples origins. Comparing the
results provided by the processing of raw data against those from
scaled data sets, one can conclude that raw data improved the
grouping of samples in relation to manufacturers. This behavior
may be a direct effect of the scaling process, which tends to gather
the data and deteriorates the discrimination.

In another turn, as Fig. 3 illustrates, data sets obtained by the
uncoupled (þ) MS technique produced better results when

Fig. 4. PC1–PC2 score plots for RPLC/(�)MS, RPLC/(þ)MS, RPLC/UV (220 nm), (�)MS, (þ)MS, and UV.

Fig. 5. Hierarchical clustering of the Ginkgo Biloba samples using: for RPLC/(�)MS, RPLC/(þ)MS, RPLC/UV (220 nm), (�) MS, (þ) MS, and UV.
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comparing to RPLC/(þ)MS data. This remains valid for both raw
and scaled values.

For informational purpose, projection of all samples in the space
defined by the membership degrees to various clusters obtained from
raw and scaled data sets is presented in the Supplementary material:
Parts D and E, respectively. According to the technique of investiga-
tion, classification power varies for raw data in the order UVoRPLC/
(�)MSoRPLC/UVE(�)MSoRPLC/(þ)MSE(þ)MS, while for the
scaled data the succession differs slightly: UV ERPLC/(�)MSERPLC/
(þ)MSoRPLC/UVo(�)MSo(þ)MS.

3.3. Comparison of FHC to PCA and CA results

The discrimination power provided by FHC may be also
evaluated through comparison to results produced by the common
classification methods, more specifically PCA and CA. The PCA
eigenvalues enlisted in Table 3 confirmed the FHC results, meaning
that the hyphenation of MS to RPLC substantially favors discrimi-
nation power between samples.

Both processing algorithms behave similarly on the given data
sets. Figs. 4 and 5 contain classifications produced through
application of PCA and CA, respectively.

Both PCA and CA produced isolation of manufacturer A against
the others when considering all data sets, except those originating
from (�) MS and UV techniques. Exactly the same situation could be
observed on grouping manufacturers C–F against A and B. Manu-
facturer B was identified based on data provided by all techniques
when processed by PCA. Under CA processing algorithm, RPLC/UV
and UV taken individually failed to discriminate between manufac-
turer B and the other ones. Succession within manufacturer's B
batches was obtained only with PCA and CA, based on RPLC/(þ)MS
data set. Exclusion of the RPLC dimension made processing proce-
dures insensitive to the batch production order.

PCA and CA did not allow identification of manufacturers E and
F, as individual batches. PCA and CA failed also to classify
manufacturers C and D, each containing two batches. Under PCA
processing conditions the classification power varied in the order
UVo(�)MSo(þ)MSERPLC/UVoRPLC/(�)MSoRPLC/(þ)MS.
The order is slightly modified when data were treated through the
CA algorithm: UVo(�)MSoRPLC/UVo(þ) MSoRPLC/(�)MSo
RPLC/(þ)MS.

4. Conclusions

It appeared from the experimental approach that batch to
batch discrimination may be achieved only through RPLC/(þ)MS
and FHC or CA analysis of data. Manufacturers A and B were easily
identified by either HPLC/MS or MS approaches. With respect
to the ability of discrimination between manufacturers C–F, the
FHC approach is more powerful compared to PCA and CA. Data
interpretation through PCA allowed the lower classification power
against the used chemometric treatments. Within the FHC treatment,
processing of raw and centered data produced similar classifications,
while scaling data induced a negative effect on the discrimination
capacity that derived from their gathering tendency.

As expected, the raw intrinsic information produced by the
analytical investigation technique of samples plays an important role
in tuning the discrimination power. The chromatographic dimension
was necessary to observe the batch to batch variability. However, the
chromatographic separation does not add significant insights with
respect to manufacturer's identification. The holistic comparison of
the classification ability of the analytical techniques used during the
present work results in the following ranking order: UVoRPLC/
UVo(�)MSoRPLC/(�)MSo(þ)MSoRPLC/(þ)MS. This hierarchy
seems difficult to interpret at a first sight, as long as the number of

peaks in chromatograms is relatively the same irrespective to the
detection system that was used, while signals in the (þ)/(�) mass
spectra are identical. The last position occupied by the UV spectro-
metry can be easily explained, since differences between samples are
based on relatively small shifts of the three or four existing absorp-
tion bands. The ability of the MS spectral investigation modes to
overcome UV is also obvious. The selectivity induced by the RPLC
separation is balanced by the ionization characteristics of the ESI and
the intrinsic sensitivity of the MS detection. Compounds in samples
simultaneously ionize and the mild ionization technique seriously
limits the fragmentation of the produced molecular ions. This results
in a limited overlapping of signals in the resulting spectra, while
conserving the ability to consider most of the components from the
complex mixture, including minor ones. Thus, the mass spectra
become perfect carriers of subtle differences and the discrimination
ability increases. The superiority of (þ) MS over (�) MS in detection
is far more difficult to explain since negative ionization generally
occurs more selectively compared to the positive one. However, one
should consider that the composition of the mobile phase was
optimized for positive ionization. Consequently, (�) MS spectra
exhibit signals having at least one order of magnitude lower intensity
compared to (þ) MS ones, and the ability of observing minor
components decreases. The increased sensitivity in the positive
ionization mode accounts for a specific pattern added particularly
by these minor compounds in the samples and largely contributes to
the increase of the differentiation ability.
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